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Abstract—Interoperability and scalability are key require-
ments for the implementation of Industrie 4.0 (I4.0) application
scenarios targeting flexible and resilient production systems. In
place of the rigid structures and heterogeneous communication
solutions used in Operational Technology (OT) today, loosely
coupled systems using standardized interfaces and information
models are needed in order to decrease the high manual
effort for (re-)configuration. With this regard, the Publish-
Subscribe (PubSub) communication paradigm is well suited for
the implementation of loosely coupled systems, that can e.g. be
implemented using the MQTT application protocol. However,
MQTT is data agnostic and does not address interoperability
on the information layer, i.e. the definition of topic trees and
payloads are up to the user. Specifications like Sparkplug B
(Sparkplug) and the standard OPC Unified Architecture (OPC
UA) use MQTT as a transport protocol and add such missing
features. In this article, Sparkplug and OPC UA are compared
according to the requirements of the I4.0 scenarios Plug & Work
and Condition Monitoring.

Index Terms—Industrie 4.0, MQTT, OPC UA, Sparkplug B
I. INTRODUCTION

In this day and age, increasing the flexibility and resilience
of manufacturing faces challenges regarding interoperability
and scalability of technical systems [1], [2]. As a key enabler
for these two key aspects of Industrie 4.0 (I4.0), the rigid
Operational Technology (OT) and Information Technology
(IT) architectures widely used today, have to develop into the
direction of a dynamic and loosely coupled Industrial Internet
of Things (IIoT) [3], [4].

This is mainly due to high manual effort that is needed
today to (1) configure point-to-point connections and (2) map
data variables between lots of different and changing systems,
e.g. Programmable Logic Controllers (PLCs), Manufactur-
ing Execution Systems (MES), and Data Analytics Tools.
Additionally, the (3) workload on systems and (4) network
infrastructure becomes a bottleneck when trying to scale out
the classic architecture, e.g. for large-scale distributed I4.0
application scenarios like (Collaborative) Condition Monitor-
ing or (global) Plant Optimization. A tight coupling works
in industrial control setups with a manageable amount of
devices, where systems should know (about the state of) each
other to achieve certain levels of Quality-of-Service (QoS),
e.g. with regard to determinism, reliability, and maintainability
[5]. Nevertheless, I4.0 scenarios like ”Plug & Work” require
a loser coupling as well [3].

Avoiding the issues (1) - (4) during the implementation
of the I4.0 application scenarios mentioned above requires
a decoupling of the communicating entities in space, time,
and synchronization [6]. These entities should not have to
know each other (space), they should not have to be active
at the same time, and they should not be blocked while
producing events or waiting for events (synchronization) [6].

Exactly this can be achieved with the PubSub communication
paradigm. Here, messages from publishers are broadcasted
to multiple subscribers, who are interested in certain topics
or content [6]. These broadcasts are handled by a Message
Oriented Middleware (MOM), which is a software or hardware
infrastructure that supports sending and receiving messages
between distributed systems. Several technologies offer im-
plementations of the PubSub communication paradigm, e.g.
Apache Kafka, AMQP or MQTT [7]–[9]. Especially MQTT
is achieving increasing attention for IIoT Use Cases and
is used as a transport protocol in standards like OPC UA
and specifications like Sparkplug B (Sparkplug) [10], [11].
Reasons for this are that MQTT already addresses most of
the challenges mentioned above, namely (1) PubSub for loose
coupling, (3) focus on a small footprint for embedded devices,
and (4) unreliable low bandwidth networks [8]. Additionally,
MQTT’s protocol design is kept simple and does not specify
an information or topic model [11]. But looking at challenge
(2) from above, in the IIoT this can turn out to rather be a
disadvantage. For this reason, MQTT topic namespaces and
payload structures are defined by OPC UA and Sparkplug.

This paper is organized as follows. Section II introduces the
I4.0 application scenarios Plug & Work (P&W) and Condition
Monitoring (CM) with regard to their requirements. Section III
introduces the state of the art for the implementation of IIoT
application scenarios by covering the popular technologies
MQTT, OPC UA over MQTT and Sparkplug. Section IV
analyzes the solutions OPC UA and Sparkplug based on the
requirements of the application scenarios from Section II.
Section V concludes this paper by summarizing results and
identifying open issues for future work.

II. INDUSTRIE 4.0 APPLICATION SCENARIOS

This section describes application scenarios addressing two
key aspects of Industrie 4.0: Flexibility of production systems
(PS) to rapidly adapt to change, and Condition Monitoring
(CM) as base requirement for resilience by preventing failures
in these PS. Requirements are derived from the application
scenarios and merged, if possible.

A. Plug & Work

The application scenario P&W addresses the flexibility and
changeability of production systems, i.e. to integrate new
components and thus enhanced functionality, modify or update
existing entities, or extract existing entities to disable certain
functionalities [4], [12]. Today, a lot of manual effort is needed
for the (re-)configuration of such hard-coded systems, e.g.
to (re-)map variables in IEC 61131-3 PLC programs [13].
This approach is not only time consuming, but also error



prone. Main requirements for the application of P&W of PS
components are [4]: (r1) Component descriptions: Machine
interpretable and uniquely identifiable capability description,
(r2) Component selection: Automatic comparison of function-
oriented descriptions of production tasks and components’
capabilities, (r3) Component access: Uniform interfaces to
components for orchestration by higher layer control systems,
and (r4) Component control: Modular, self-adapting informa-
tion and control structures for components.

B. Condition Monitoring

CM describes the process of monitoring the condition of
equipment (components, machines, PS) via suitable data vari-
ables, e.g. vibration or temperature, particularly for anomaly
detection [14]. A CM System (CMS) consists of modules for
the collection, analysis and visualization of process and alarm
data [15], whereby the analysis again consists of model learn-
ing and anomaly detection phases [16]. To date, especially data
collection suffers from challenges regarding the variety and
quantity of heterogeneous industrial communication systems
deployed in the field [2], [17]–[20]. These systems use differ-
ent interfaces and information models leading to (1) and (2)
from Section I. Most of these systems establish point-to-point
connections via the Client Server communication paradigm
leading to (3) and (4) from Section I, especially for enterprise-
wide and global CMS. In this scenario industrial data would
be exchanged over the Internet, which opens PS to new threats
and automatically leads to certain requirements regarding
Cybersecurity [2]. In many brownfield scenarios additional
IoT sensors would be installed that might rely on batteries and
mobile networks. These devices profit from protocols that only
lead to so much workload and need low bandwidth. Hence,
the following requirements for the efficient implementation of
CM in PS can be derived: (r5) Uniform interface for data
acquisition, (r6) Standardized semantic information models,
(r7) Scalability, (r8) Cybersecurity, and (r9) Low Bandwidth.

C. Overall Requirements

For the sake of clarity, some requirements from above can
be merged. (r3) and (r5) can be merged to (R1) Uniform
interface, since component access is a prerequisite for data
acquisition. Since capabilities, task descriptions, and modular
control structures can be contained in information models,
(r1), (r2), (r4) and (r6) are merged to (R2) Standardized
semantic information models. The following requirements
for CM remain: (R3) Scalability, (R4) Low Bandwidth, and
(R5) Cybersecurity. In general, the capital intensive nature of
manufacturing, as well as possible safety threats have to be
taken into account as well [21]–[23]. Especially flexible PS
should be based on international standards (R6) developed
and adopted by major companies (R7) in order to achieve an
acceptable level of security for investment [21], [24]. Addition-
ally, the compliance of products implementing these standards
should be tested and certified to assure their reliability (R8)
[25].

III. STATE OF THE ART

A. MQTT
MQTT originated from a use case in which oil pipelines

should be connected via satellite connections [26]. Thus, im-
portant requirements included minimal bandwidth usage and
QoS for data delivery. MQTT is published by the Organization
for the Advancement of Structured Information Standards
(OASIS) and version 3.1.1 is additionally standardized as
ISO/IEC 20922:2016 [27], [28]. MQTT is data agnostic and
based on a transport protocol that must provide ordered, loss-
less, bi-directional connections, e.g. the Transmission Control
Protocol (TCP). Using these connections, a protocol for the
communication between Clients (Publishers and Subscribers)
and a Server (Message Broker) is specified that offers mes-
saging with minimal protocol overhead (2 byte fixed header
length), three QoS levels (”at most once”, ”at least once”,
”exactly once”) and notifications about abnormal disconnec-
tions. MQTT uses registered port numbers 1883 (mqtt) and
8883 (secure-mqtt) and can be tunneled through port 80 using
WebSockets. In MQTT, the Broker is responsible for message
filtering, message distribution, authentication and authorization
[26]. After a client has established a connection to the Broker,
it can publish messages using a PUBLISH control packet, i.a.
including a topic name as UTF-8 encoded string consisting
of one or more topic levels separated by a forward slash
[26]. Clients can subscribe to such topics by sending the
corresponding SUBSCRIBE control packet to the Broker, i.a.
including one or more single- (”+”) or multi-level (”#”) topic
filters. The Broker then distributes messages published to
topics to subscribers. MQTT 5 supports additional features
that evolved around handling topics, e.g. shared subscriptions,
topic aliases, and request-response style communication via
corresponding topics [29]. Some well-known Brokers include
HiveMQ [30], Eclipse Mosquitto [31] or RabbitMQ [32].

B. OPC UA over MQTT
OPC UA is an industrial interoperability framework and IEC

Standard developed by the OPC Foundation (OPCF) [33]. The
OPCF is a global organization consisting of over 900 members
committed to secured, robust industrial interoperability from
sensor to cloud and back independent from any vendor,
operating system, market and language [34]. The technology
is driven by the member companies sending their experts
into the working groups of the OPCF to extend and enhance
the specifications. OPC UA can be considered as a modular
toolbox for I4.0 compliant communication [35]. The modules
of the toolbox correspond to the different parts of the OPC UA
standard like transport, security, and information modeling.

1) Transport: For transport, OPC UA supports Client
Server and PubSub communication paradigms, that can both
be used in parallel [36]. OPC UA PubSub is transported
via a MOM, which in its simplest form can be network
infrastructure that is able to broadcast datagrams in locally
distributed systems. The alternative is using a MOM based
on a Message Broker, which is well suited for the large-
scale distributed systems mentioned before, where potentially
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millions of clients exchange messages via unreliable wide area
networks and the resulting Big Data has to be exchanged as a
stream of messages with business applications most efficiently.
OPC UA PubSub can be transported Broker-less using the
User Datagram Protocol (UDP) or directly via Ethernet, which
is important for real-time communication on the shopfloor
[37]. The Broker-based variant of OPC UA PubSub can be
transported via Advanced Message Queuing Protocol (AMQP)
or MQTT. AMQP emphasizes transactional mechanisms and
is mainly driven by business cases of the financial sector
[9]. In this article, the focus is on the OPC UA over MQTT
protocol stack depicted in Figure 1 targeting IIoT scenarios,
e.g. using the supported Cloud solutions Microsoft Azure and
Amazon Web Services (AWS) [38], [39]. OPC UA PubSub
messages can be encoded using JSON or a UADP message
mapping based on an optimized version of the OPC UA binary
encoding [36]. For automatic features like discovery, status
and semantic information a standardized MQTT topic tree is
necessary and will be included in version v1.05.03 of [36].
Because of industry feedback, which require to allow any topic
tree structure for the data messages, this topic tree will not be
mandated. Nevertheless, a suggestion will be provided.

2) Security: Security is an integral part of OPC UA and
focuses on known threats and countermeasures for industrial
automation systems [40]. For OPC UA PubSub different levels
of security can be achieved depending on the environment and
the chosen encoding scheme. For the Broker-less variant of
OPC UA PubSub, confidentiality and integrity of messages
can be assured by using symmetric encryption and signature
algorithms. When using a broker for OPC UA PubSub com-
munication, often the broker itself offers mechanisms for au-
thorization of clients and to meet confidentiality, integrity and
authentication. Additionally, for UADP the same symmetric
key concept as defined above can be used to disclose message
content from the broker, decreasing the risk of man-in-the-
middle attacks. The keys needed for message security can
be distributed via a specified Security Key Server and thus
do not have to be shared via the MOM [36]. Using OPC
UA’s JSON encoding, end-to-end message security cannot be
assured. Nevertheless, non-repudiation can be implemented
and allows subscribers to know the true origin of the data. In
general, the Security of OPC UA is reviewed by the German
BSI [41].

3) Information Modeling: The basic information model of
OPC UA describes standardized nodes of a server’s address
space. Additionally, predefined base models exist, e.g. for Data
Access, Alarms & Conditions, and Historical Access [42]. On
top of these basic models other organizations define so called
Companion Specifications (CS). These OPC UA CS enable
interoperability in and between different domains like plastics,
robotics, machine tools, sensors and 85+ more. Especially
in machinery and equipment manufacturers invest a lot of
effort in the standardization of CS to enable use cases like
P&W and CM by reducing the effort for data integration
based on semantics included in CS [35]. For example, the
German VDMA (Machinery and Equipment Manufacturers
Association), representing about 3.500 German and European
companies of the mechanical engineering industry, is standard-
izing CS for machinery enabling cross-sector interoperability.
On top of CS, vendor-specific information can always be
modeled to account for specific use cases and intellectual prop-
erty. Focusing on PubSub, parts of an OPC UA application’s
address space called DataSets can be configured for being
published as payload of messages to a MOM [36]. Syntax and
semantics of the DataSet are described in DataSetMetaData
messages that can also be shared between publishers and
subscribers independent of the MOM. This way, it’s possible
to use the many existing standardized information models in
PubSub scenarios efficiently. Publishers and subscribers can be
configured by generic configuration tools using the specified
PubSub configuration model contained in an OPC UA Server.

C. Sparkplug

The Sparkplug specification has initially been released in
2016 aiming at increasing the interoperability of MQTT based
solutions in the IIoT and Supervisory, Control and Data
Acquisition (SCADA) market [11]. Since 2019, Sparkplug is
an open-source specification hosted at the Eclipse Founda-
tion. The latest version 3.0.0 of the specification has been
published in late 2022 [43]. In 2023, the Eclipse Sparkplug
Working Group is mainly driven by 12 companies and offering
a Technology Compatibility Kit (TCK) and logo program
for companies to certify Sparkplug compliance [44], [45].
Sparkplug specifies a topic namespace, state management,
and payload definition for the communication between a Host
Application and Edge Nodes via a Sparkplug compliant or
aware MQTT Server as central Message Broker [43].

1) Topic Namespace: Sparkplug specifies the spBv1.0
namespace, that enables the unique identification and logical
grouping of Edge Nodes and attached devices via correspond-
ing identifiers. A message type part of the topic describes
how to interpret the payload and enables a host application
to discover metadata, metrics, write commands, and monitor
the state of nodes and devices [43].

2) MQTT State Management: Managing the state of com-
ponents in a Sparkplug infrastructure is implemented around
a set of specified birth and death certificates in conjunction
with MQTT will messages and the connection keep alive timer
[43]. Subscribers can be notified if a MQTT client connection
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is lost ungracefully, since persistent nodes stay connected at all
times allowing the host application to know the state of these
nodes based on the keep alive period and the concept for birth
and death. Host applications use a specific topic to signal their
availability to subscribers. Since time is an important aspect of
state management, Sparkplug defines that all timestamps must
be in Coordinated Universal Time (UTC) and that participants
must have a mechanism to ensure their clocks remain accurate,
e.g. based on the Network Time Protocol (NTP). Based on
this state management, Sparkplug also supports Report by
Exception (RBE) and transmits values only if they changed.

3) MQTT Payload Definition: The original payload def-
inition is called Sparkplug A and has been replaced by
Sparkplug B already in version 2.1 of the specification [11].
As depicted in Figure 2, Sparkplug uses protobuf for encod-
ing message payloads. Protobuf is an approach by Google
for a language-neutral, platform-neutral extensible mechanism
for (de-)serializing structured data to and from a “compact,
forward- and backward-compatible binary format” [46]. It
uses concepts like varint and packing to reduce data size.
Protobuf is open source under Apache 2.0 license since
2008. Nevertheless, to date only Google Cloud offers native
support for protobuf [47]. Sparkplug defines a protobuf schema
consisting of an array of metrics with metadata surrounding
those metrics. A metric represents a key, value, timestamp, and
datatype along with metadata used to describe the information
it contains. Metadata is mainly based on content descriptions
in the form of UTF-8 encoded strings, e.g. containing plain
text, JSON, or XML. Nevertheless, custom data can be added
as an array of bytes as well, e.g. a PDF documentation file. Ad-
ditionally, a specified PropertySet can be used to add custom
properties to a metric, e.g. a unit for a certain measurement.
Further, templates can be used to define complex datatypes
as an array of metrics, which can also be other templates or
parameter definitions with default values.

4) Security: Security is a non-normative part of the Spark-
plug specification, that provides a guideline on how to secure
a Sparkplug infrastructure based on the security sections
of MQTT [11], [29]. For Confidentiality, mechanisms for
encrypting the underlying connection, e.g. Transport Layer
Security (TLS), shall be used. Additionally, Access Control
Lists (ACL) are used to restrict publish or subcribe access
to topics in the MQTT Broker, that shall be able to decrypt,
decode and read all exchanged messages.

IV. REQUIREMENTS ANALYSIS

In this section the two solutions OPC UA and Sparkplug
are analyzed according to the requirements from Section II.

(R1) Uniform Interface

Both solutions aim at increasing industrial interoperability
by providing a uniform interface based on MQTT. Sparkplug
specifies a MQTT topic namespace for data, discovery and
status of host applications, edge nodes, and devices. This topic
namespace is fixed for all Sparkplug compliant applications.
OPC UA will include a standardized topic tree for discovery,
status and semantic information, as well as custom topic
structures for data messages. The Sparkplug interface specifies
a protobuf schema for binary message mapping natively sup-
ported by Google Cloud. In addition to its own binary mapping
UADP, OPC UA over MQTT also offers a JSON mapping and
is supported by Microsoft Azure and AWS.

(R2) Standardized Semantic Information Models

Establishing standardized semantic information models is
a main goal of OPC UA’s CS. There are currently 85+
information models available on the public website, that are
being developed together with other organizations, industry
associations, and domain experts. CS are available for classes
of devices, machines, and complete domains like energy and
factory automation. Publishing parts of these CS via MQTT
is an inherent feature of OPC UA. Sparkplug focuses on a
generic model for SCADA use cases and currently does not
specify industry specific information models.

(R3) Scalability

In this article, (R3) has been derived from the application
scenario CM in order to address the common challenges
from Section I. OPC UA addresses (1) in the sense of
maintainability by defining a generic configuration model
and topics containing configuration information, allowing to
centrally manage, configure and discover an arbitrary number
of OPC UA PubSub enabled devices, e.g. using standard OPC
UA Clients. Sparkplug currently relies on the configuration
of publishers and subscribers on source code level or using
device-specific tools. Challenge (2) is addressed by OPC UA’s
CS and publishing parts of these as semantic information via
corresponding topics. Sparkplug offers to publish metadata as
well. Nevertheless, this metadata has to be defined by the
user. The workload on systems (3) highly depends on the
implementation of a specification. Sparkplug offers reference
implementations in C, Java, Javascript, and Python. In addition
to numerous reference implementations supporting a variety of
programming languages, e.g. C, C#, Java, Javascript, OPC UA
specifies implementation profiles, e.g. to scale from a single
sensor up to a full-featured OPC UA application in the Cloud.
Scalable communication is derived from (4) and a main goal
of MQTT and thus addressed by both solutions, e.g. using a
clustered Broker infrastructure.



(R4) Low Bandwidth

Using low bandwidth is a key intention of Sparkplug and a
reason to use protobuf for binary encoding of messages. OPC
UA offers its own binary mapping called UADP. Current work
already focuses on a detailed comparison of the UADP and
protobuf encodings. For the reasons stated in Section III, OPC
UA additionally offers a JSON encoding of messages. For
good reasons described in Section III-B, this encoding will
certainly consume more bandwidth than binary encodings.

(R5) Cybersecurity

Both solutions offer to use TLS and MQTT security fea-
tures. In addition, OPC UA over MQTT allows for application-
to-application integrity and confidentiality, if UADP is used.
This allows scenarios, where intermediate brokers will not be
able to read the data. OPC UA over MQTT with the JSON
encoding will offer non-repudiation which allows subscribers
to know the true origin of the data, which is an important
requirement for many applications. OPC UA Security has
been reviewed by German BSI and other international security
experts due to relevance to their industry.

(R6) International Standard

OPC UA is published as IEC standard 62541. Sparkplug is
published as open specification by the Eclipse foundation.

(R7) Adoption

As listed in Section III-B, the OPCF consists of over 900
members. OPC UA over MQTT is currently adopted by 26
companies from OT, as well as AWS and Azure as major
Cloud solutions. These companies participate in a designated
plugfest activity since 2021 [48]. Sparkplug currently lists
12 companies developing the specification on the website
(see Section III-C). No specific coverage about Sparkplug’s
adoption could be found during this research.

(R8) Compliance & Certification

OPCF runs a compliance and certification program which
includes interoperability testing between different vendors. A
Conformance Test Tool (CTT) is available including over
1.800 test scripts for OPC UA and its CS. Certification is
optional for OPC enabled products, but all certified applica-
tions are required to go through a third-party assessment in an
OPCF Certification Test Lab. The certification and compliance
testing is performed both on the core OPC UA specifications
and on industry defined CS. HiveMQ provides a Technology
Compatibility Kit (TCK) for Sparkplug 3.0, that can be used
to certify conformance to profiles for Host Applications, Edge
Nodes and MQTT Brokers. This includes 6 tests for Host
Applications, 5 for Edge Nodes, as well as tests for Sparkplug
compliant or Sparkplug aware (including state management)
MQTT Brokers. Sparkplug offers a logo program for products
that have been certified compatible.

V. SUMMARY AND FUTURE WORK

This paper introduced challenges as well as specific re-
quirements for the implementation of the two I4.0 application
scenarios P&W and CM. A uniform interface (R1) is needed
and provided by both solutions on top of MQTT. With regard
to defined fixed topic namespaces, OPC UA plans to stay more
flexible by additionally allowing custom topic trees for data
messages and providing semantic information via specified
topics. While both solutions offer efficient binary encodings,
OPC UA also includes a JSON message mapping, that can
be understood by humans without special tooling and applica-
tions unaware of OPC UA. Standardized semantic information
models (R2) are crucial for the implementation of P&W (see
Section II) but also facilitate data integration for CM. Here,
OPC UA has a lot to offer with its CS that can be transported
via OPC UA over MQTT as well. A scalable (R3) network
infrastructure is addressed by both solutions. Nevertheless,
especially OT solutions must be (re-)configured regularly and
thus profit from OPC UA’s configuration model and topic
structure. Both solutions offer efficient binary encodings for
low bandwidth consumption (R4). Regarding Cybersecurity
(R5), OPC UA over MQTT can disclose message content from
the Broker and assure the true origin of data. Here, Spark-
plug solely relies on MQTT’s Cybersecurity features. While
Sparkplug is an open specification published by the Eclipse
Foundation, OPC UA is an established IEC Standard (R6).
The stable IEC workflow is often recognized as high value by
organizations, that e.g. build their information models on top
of OPC UA. OPC UA over MQTT is adopted (R7) by major
companies from IT and OT that work on the interoperability
of their solutions for already two years now. OPC UA runs
a well established compliance and certification program (R8),
while the TCK for Sparkplug compliance testing is offered by
the company HiveMQ.

In conclusion, Sparkplug adds important features for the
implementation of I4.0 application scenarios to MQTT. It can
be reasonable to use Sparkplug, if a system’s configuration
does not change too often and if a binary encoding is what
is needed. Especially the application scenario P&W requires
efficient (re-)configuration of PS potentially based on standard-
ized semantic information models (see overall requirements
in Section II). In this regard, OPC UA offers advantages like
CS and a generic configuration model. Additionally, OPC UA
being an international standard adopted by major companies
is an advantage for the security of investment (see Section II).

Future work should compare the binary encodings UADP
and protobuf in depth and also evaluate the usage of Sparkplug
and OPC UA in a real world setting, e.g. actual measure-
ments for latency and bandwidth could provide more insights.
Additionally, mapping OPC UA’s CS to Sparkplug should
be evaluated. Furthermore, the workload of Sparkplug and
OPC UA implementations needs to be analyzed for different
scenarios, e.g. from a sensor publishing a single value to
applications aggregating global plant data in the Cloud.
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